credit.csv
0.09MB

 

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# 의사결정트리 알고리즘을 이용하여 은행 대출 채무 이행/불이행 여부 예측
credit = read.csv('c:/data/credit.csv',header=T,stringsAsFactors = T)
 
# 데이터 형태 확인
str(credit) # 수치형, 명목형 섞여있음
 
# 데이터 분류 (caret 사용)
# install.packages('caret')
library(caret)
set.seed(5)
intrain = createDataPartition(credit$default,p=0.9,list=F)
 
# train(90%) / test(10%)
credit_train = credit[intrain,]
credit_test = credit[-intrain,]
 
nrow(credit_train) # 900
nrow(credit_test) # 100
 
# 의사결정트리 모델 생성
library(C50)
credit_model = C5.0(default~.,data=credit_train,trials=24# 24 : 0.87
credit_result = predict(credit_model,credit_test[,-17])
 
# 이원 교차표로 결과 확인
library(gmodels)
= CrossTable(credit_test[,17],credit_result)
 
# install.packages('rpart')
# install.packages('rpart.plot')
library(rpart)
library(rpart.plot)
 
# 의사결정트리 시각화
rpartmod = rpart(default~., data=credit_train, method='class')
rpart.plot(rpartmod)
 
x$prop.tbl[1]+x$prop.tbl[4# 0.87
 
# 어떤 trial 값이 가장 정답률이 높은가?
temp = c()
num = c()
for (i in 1:100) {
  num = append(num,i)
  credit_model = C5.0(default~.,data=credit_train,trials=i)
  credit_result = predict(credit_model,credit_test[,-17])
  x = CrossTable(credit_test[,17],credit_result)
  g3 = x$prop.tbl[1]+x$prop.tbl[4]
  temp = append(temp,g3)
}
 
result = data.frame("trials"=num,"정확도"=temp)
 
library(plotly)
plot_ly(x=~result[,"trials"],y=~result[,"정확도"],type='scatter',mode='lines') %>%
  layout(xaxis=list(title="trials"),yaxis=list(title="정확도"))
cs

 

 

 

의사결정트리가 실제로 분류되는 모습

 

 

 

 

+) 호기심에 미친 나! 어떤 seed값과 trial값이 가장 좋은 결과를 만들어낼까? 2중 for 문 돌려보자!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# 의사결정트리 알고리즘을 이용하여 은행 대출 채무 이행/불이행 여부 예측
credit = read.csv('c:/data/credit.csv',header=T,stringsAsFactors = T)
 
# 데이터 형태 확인
str(credit) # 수치형, 명목형 섞여있음
  
library(caret)
library(C50)
library(gmodels)
 
# 어떤 trial값과 seed값이 가장 정답률이 높은가?
temp = c()
num = c()
seed_num = c()
for (j in 5:6) {
  for (i in 1:100) {
    set.seed(j)
    intrain = createDataPartition(credit$default,p=0.9,list=F)
    
    # train(90%) / test(10%)
    credit_train = credit[intrain,]
    credit_test = credit[-intrain,]
  
    num = append(num,i)
    credit_model = C5.0(default~.,data=credit_train,trials=i)
    credit_result = predict(credit_model,credit_test[,-17])
    x = CrossTable(credit_test[,17],credit_result)
    g3 = x$prop.tbl[1]+x$prop.tbl[4]
    temp = append(temp,g3)
    seed_num = append(seed_num,j)
  }
}
 
# seed값과 trials에 따른 정확도를 보여주는 result라는 테이블을 만들어다.
result = data.frame("trials"=num,"seed"=seed_num,"정확도"=temp)
result
 
# 제일 좋은 조건 한번에 보기
result[result$정확도==max(result['정확도']),]
 
# 근데 lines 그래프로는 seed값을 어떻게 보여줘야 될 지 모르겠네 ^^
# 아는 분은 댓글로 좀 알려주세요 ^0^
library(plotly)
plot_ly(x=~result[,"trials"],y=~result[,"정확도"],type='scatter',mode='lines') %>%
  layout(xaxis=list(title="trials"),yaxis=list(title="정확도"))
cs

 

 

 

개판... set.seed(5) / trials = 24 인게 87%로 가장 낫다!

 

 

 

 

 

 

skin.csv
0.00MB

 

 

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# 의사결정트리 알고리즘을 이용하여 화장품 구매 고객 예측하기
# skin 데이터 갖고 오기 (C50 쓰려면 컬럼명,데이터 모두 영어여야함)
skin <- read.csv("c:/data/skin.csv", header=T ,stringsAsFactors = TRUE)
str(skin)
 
nrow(skin) # 30
 
# TEST용 하나 제외
skin_real_test_cust <- skin[30, ]
skin_real_test_cust
 
# TEST용을 제외하고 새롭게 skin2 생성
skin2 <-  skin[ 1:29, ] 
nrow(skin2) # 29
 
skin2 <- skin2[ , -1# 고객번호 제외
 
# shuffle
set.seed(0)
skin2_shuffle <- skin2[sample(nrow(skin2)),]
 
train_num <-  round(0.7 * nrow(skin2_shuffle), 0# 20
 
# train(70%) / test(30%)
skin2_train <- skin2_shuffle[1:train_num,]  
skin2_test  <- skin2_shuffle[(train_num+1) : nrow(skin2_shuffle),] 
 
nrow(skin2_train)  # 20
nrow(skin2_test)   #  9 
 
# 의사결정트리 패키지 설치
# install.packages("C50")
library(C50)
 
# 의사결정트리는 trials와 seed로 정확도 조절
skin_model <- C5.0(cupon_react~.,data=skin2_train,trials=10,replace=T)
skin_model # skin 데이터는 데이터양이 너무 적어서 trials=1번밖에 못 도는 것 확인 가능
 
# 정답 / 예측값 확인
skin2_result <- predict(skin_model , skin2_test[  , -6])
<- data.frame(skin2_result,skin2_test[6])
table(x)
 
skin3_result <- predict(skin_model,skin_real_test_cust)
data.frame(skin3_result,skin_real_test_cust[7])
 
library(gmodels)
CrossTable( skin2_test[  , 6],  skin2_result )
 
per <- CrossTable( skin2_test[  , 6],  skin2_result )
per$prop.tbl[1]+per$prop.tbl[4# 0.777778
cs

 

 

 

+ Recent posts